Table 3. Comparison of slopes and equilibrium pressures obtained from our data with that of others.

	Crawford and Hoersch	Boettcher and Wyllie (1968)	Johannes and Puhan (1971)
Slope of the boundary curve (bars/degree C)	13.8*	13.7**	16.7***
Pressure of 0° C Intercept (kbars)	3.04	2.82	1.99
Pressure at 100° C (kbars)	4.42	4.19	3.66

* Slope based on least squares determination from data presented in Table 2.

** Slope calculated from points 480° C, 9.4 kbar and 400°, 8.3 kbar (Fig. 1).

*** Slope calculated from points 300°C, 7 kbar and 180°, 5 kbar (Fig. 1).

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support given us by the Ida H. Ogilvie Bequest to the Department of Geology, Bryn Mawr College.

REFERENCES

- BOETTCHER, A. L., AND P. J. WYLLIE (1968) The calcite-aragonite transition measured in the system CaO-CO₂-H₂O. J. Geol. 76, 314-330.
- Crawford, W. A., and W. S. Fyfe (1964) Calcite-aragonite equilibrium at 100°C. Science, 144, 1569-1570.
- Johannes, W., and D. Puhan (1971) The calcite-aragonite transition, reinvestigated. Contrib. Mineral. Petrology 31, 28-38.